
The application of the Kirchhoff approximation to the initial mathematical model allows 
us to solve the problem on a regular grid, since the boundary conditions (6) are transformed 
into the equality of the derivatives of the new functions with respect to the normal. In 
this case at the point of contact there is a step between the new functions, which increases 
as the ratio of the thermal conductivities of the materials in contact increases. The IHC 
problem is best solved (from the standpoint of computational difficulties) by using the 
method when the observation points are arranged in one of th ebodies in contact. 

In summary, the proposed method of solving the IHC problem on the basis of limited 
information about the thermal state of the composite body allows the TRC to be calculated 
with engineering accuracy by numerical methods, the use of which is necessitated, as a rule, 
by the complex geometry of the objects studied. The most promising for solving problems 
of this class is the regional-structural method [2], which allows the heat flux to be deter- 
mined in a continuous form. 

NOTATION 

Here T denotes the temperature; x and y are the spatial coordinates; t is the time 
coordinate; q is the heat flux, a:ij and bij are the parameters of the boundary-effect func- 
tions; Wij are the spectral boundary-effect fucntions; c v is the specific heat at constant 
volume; l-is the thermal conductivity; = is the heat-exchange coefficient; and R is the 
thermal contact resistance. Indices: s is the number of the observation point; sur denotes 
surface; and m denotes medium. 

. 
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APPLICATION OF DIRICHLET AND NEUMANN PROBLEMS IN CONNECTION 

WITH STUDIES OF NONSTATIONARY HEAT CONDUCTION 

V. P. Kozlov, V. S. Adamchuk, 
and V. N. Lipovtsev 

UDC 536.~1 

Regularities in the development of three-dimensional nonstationary temperature 
fields in semi-bounded iso- and orthotropic media are deduced under discontinu- 
ous boundary conditions of the first or second kind, given in the most general 
form. 

A theoretical foundation for the creation of modern methods and measuring tools for 
the nondestructive control of thermophysical characteristics (TPC) of various materials is 
furnished by appropriate solutions of many-dimensional nonstationary problems of heat con- 
duction with discontinuous boundary conditions (BC) [1-22]. As a result of the action of 
arbitrary discontinuous BC on surfaces of a medium being investigated, temperature fields 
arising directly from a boundary surface (in a region of action of discontinuous BC) will 
carry thermophysical information concerning the whole complex of TPC for the given medium. 
This latter circumstance makes it possible to organize complex thermophysical measurements 
of various materials without invading its intrinsic structure (the so-called methods and 
means of nondestructive control of TPC). 

In the present paper we consdier the classical formulations of Dirichlet and Neumann 
problems in a nonstationary version and apply them to the solution of corresponding axially- 
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symmetric problems of nonstationary heat conduction for semi-bounded iso- and orthotropic 
media with discontinuous BC of the general form: 

[e  ~, (r, ~) for r < .% 
O(r,z,')!,=o=~O~=(r,,) for R 1 < ~ / , < ~ 2  ' ( 1 )  

~o for ~ < t <  oo 
o r  

I for r < R1, 

aO(r, z, ~:) I =1 " )~ 
Oz ~=o ! q~.(r, ~) for R l < r <  R2, (2)  

I0 for R ~ < r < c v ,  
where eta(r, ~), e2~ (r, ~), q1~ (r, ~), q2~ (r, ~) are given functions of surplus temperature 
and density of thermal flows on the boundary (z = 0) of a semi-bounded (orthotropic) body 
in corresponding ranges of variation in the cylindrical coordinate r. No special restrictions 
are imposed on the discontinuous functions 0i~ (r, ~) and qi~ (r, ~) (i = I, 2) in the boundary 
conditions (I) and (2) except for the existence and convergence of the following integrals: 

'~, o~(~, ~)f ~d~; i" .I ,I" ( r 4  (rt) exp (--s~:) : rJo (rt) exp (--s~) drdz. 
0 i~ t q ~  (r, ~)I b ~, i q ~  (r, ~) 

In what follows we shall be concerned with solving the following heat conduction equation: 

020 (F, Z, T) _i[_ l 0{~) (I',Z, T) 47 . ~7 z 020  (r, Z, T) - -  l OO(r ,  Z, "~) 

Or z r Or a~ Oz z a~ O~ 
(3) 

In L-transform space the solution of Eq. (3), subject to BC specified in the forn: (I), 
can be written in the form 

D 0 

"4- ( xg~= (x, s) Jo (xt) dx} exp dr, 
R, �9 g ~  (4) 

O~= (x, s) = i e ~  (x, ~) exp (--sT) d~, i = I, 2. 
0 

In the time domain the solution (4) may be written in the form 

1 d l' tJo (rt) "xO~ (x, ~ - -  ~) J. (xt) dx + 
O ( r , z ,  T ) =  2 d~ o o " 

~" - - ~ ) 4 ( x t ) d x } i e x p ( - - z t V - K ~  )x + ( xe~(x, ~c 
ht t 

• erfc 2 V a ~  

• erfe ( 2 ~  -+- t - l / ~  dtd~, 

where K a = ar/a z = Xr/X z = K x. 

We consider a particular instance of the solution (5) for the case of heat exchange 
for the body in question for constant, but not identical, temperatures 01~ (r, ~) + T c -" To = 
const and 82~ (.r, T) = T~ - T o = const(T c ~ T~ ~ T o ) in specified regions on its bounding 
surface: 

e (r, z, ~ ) =  
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X {exp( _ _ z  -i/K--~-~ xi erfc ( z - V ~  x ) + 

+ exp z I /K~ x t erie z 
R2 1 2 "l/a--~ 

s 4} x)dx (6) 

The well-known one-dimensional solution for BC of the first kind [21] is readily ob- 
tained from Eq. (6) for R I = R= = R + ~ or for T~ = T c ~ T o and R 2 + ~. 

Let us assume that in solution (6) we have T~ = To, which corresponds to maintaining 
in the region 0 E r < Rx (z = 0) a constant temperature T c ~ To, and in the region ~ > 
r > R~ (z = 0) an initial temperature T o . Then 

O(r, z, ~ )=  To--To i 2 ,. {exp( R1 x erfc ' x + 
2 ] / ~  R1 

( z )} -{-exp z'l/K-~= erfc ( "l/~z~ "4- "[/'~T x Jt (x) Jo ( r x)dx. (7) 

The simplest solution, starting from Eq. (7), is that on the axis r = 0: 

{(z)  0(0, z, x)=T(0,  z, "0 -- To = (Tc -- To) eric 2 ] / a ~  

_ z~K~ ~} (8) 
1 eric (2~a-  ~ / 1 4 -  R2 ), R~ 

V1 + z~Ka 
Using Eq. (8),  we f ind  the s p e c i f i c  thermal flow q(0, ~) = q(0 0, ~) -- Lz 00(0, z, g) 

" Oz 
on the boundary z = 0, originating at the central point (r = z = 0) of the circular isother- 
mal probe: 

b~(Tc--T~ ~ ~l/~--~rZ eric ( 2 ]/a-~R~ )} 
q(o, %=~=o - 1 + R - -  ' ( 9 )  

where b z = lz/V~ z is the thermal activity in the direction of the z-axis. 

As R z + ~, equation (9) yields the relation for the one-dimensional (per unit area) 
thermal flow q(x) originating from the surface (z = 0) of an iso- and orthotropic halfspace 
at the expense of maintaining, on the boundary of the body considered, a constant tempera- 
ture T c different from the initial temperature T O [21]. 

The two-dimensional expression (9) can be used to calculate parameters of TPC by the 
circular isothermal probe method [I, 23]. We note that as x + ~ (stationary regime), expres- 
sion (9) yields the original formula for calculation of TPC complexes: 

]/---~ = cy -I/a~, -- qe~R~Are~ ' (10) 

where qcT = q(0, 0, ~) is the stationary value of the thermal flow density at the central 
point (r = z = 0) of the isothermal disk; ATcT = T c - To; c7 is the volumetric thermal 
capacity of the orthotropic body. 

The classical solution of Eq. (3) in L-transform space, subject to the boundary condi- 
tions (2), can be written in the following form: 

1 ~ tJo (rt) ~(~, z, ~)=--~/ ~ 
z l / s + a #  2 ] R~ _ R, _ 

exp _~/~ {~ xql~(x, S)Jo(xt)dx +.f xq~(x, s)Jo(xt) dx} dt, 
"VS'+ a~t z o R, 

(11) 
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where 

qin(x, s )=  qi~(x, z) exp(--sT)dz; i =  1, 2. 
0 

In the time domain solution (ii) may be written in the form: 

ii 0 (r, z,  T) - -  1 d " do (rt) xdo (xt) ql~ (x, �9 - -  ~) dx + 
2Z~ V-R-~ d~ ~ o 

+ xJo(xt)qe~(x, ~--~)dx}{exp(--zt-VK-~)erfc z t]/a-~ - -  
~, 2 V - ~  

-- exp (zt ]/~) erfc ( z )} 2 "V--'-~ +t'l/'~rr~ didO. (12) 

Specifying in these regions on the surface (z = 0) of an orthotropic halfspace a con- 
crete law of variation for the density of the thermal flows ql~ (r, ~) and q2~ (r, ~), we 
obtain, by a simple integration of the right sides of equations (ii) or (12), a series of 
particular solutions for determining the corresponding temperature fields 8(r, z, s) or 
@(r, z, T) [1-17, 19, 20]. 

In determining the corresponding analytic functions (4), (5), (II), (12), with con- 
cretely specified discontinuous functions of temperature or thermal flow density on the 
boundary of the body considered, the following identical integral transformations prcve 
to be useful: 

b 
__ = ~ 9 exp ( z]/s+y2.h 

( > ( ) 2a ? y exp z'Vs-k-y 2 Jo { ry ') Ry dy, R>r; 
- o - V y  . k - V - ~ ) s ~  

" �9 1 / ~  l / s  + y ~  

r ) (  ) i COS pz ( s s ]/ # + s/a KI R P~+ -d Io r V p~ + -a @= 

exp [ z V-S -~yz 
z~l/a ( z ] / s ) _ n _  i V'a / Rg "} 

-- 2R ]/~ exp ,-- _1//----- ~- 20 -l/s+y z L_ [ -~-~/x  

NOTATION 

To = const, initial temperature of the orthotropic halfspace of the body considered; 
8(r, z, ~) = T(r, z, ~) - To, surplus temperature; T(r, z, ~), value of nonstationary tem- 
perature field of orthotropic mass; r, z, cylindrical coordinates; ~, time; 8i~ (r, T) = 
Ti~ (r, ~) - T O and qi~ (r, ~), respective discontinuous functions of surplus temperature 
and thermal flow density, given on boundary z = 0 of orthotropic halfspace in corresponding 
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regions of variation of cylindrical coordinate r, (i = I, 2); J0(x), J1(x), Bessel func- 
tions of a real argument of orders zero an done; 10(x), K0(x), l~(x), Kl(x), modified 
Bessel functions of orders zero and one; ar, az, kr, Xz, br, bz, respective diffusivity, 
thermal conductivity, and thermal activity of orthotropic body in direction of r and z axes; 
K a = a r/az; K X = kr/Xz; K b = br/bz, dimensionless parameters characterizing relationships 
among thermophysical properties of orthotropic body; Cz~ z = Cr~ r = c7, constant temperatures 
specified on surface z = 0 of orthotropic mass in corresponding ranges of variation for 
r; erfc x = I - erf x, complementary probability integral; q(0, ~) = q(0, 0, T), thermal 
flow density at center (r = z = 0) of isothermal disk placed on surface z = 0 of orthotropic 
mass (two-dimensional case). 
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